# The structure of AGNs from X-ray eclipses

Guido Risaliti

(CfA & INAF-Arcetri)

M. Salvati, E. Nardini (INAF-Arcetri), R. Maiolino (INAF-Roma), G. Matt, S. Bianchi (Roma3), V. Braito (Leicester), M. Elvis, G. Fabbiano, (CfA)

### Method: XMM long look of Mrk 766





→ No absorption, "standard" model

→ N<sub>H</sub>~10<sup>23</sup>cm<sup>-2</sup>, C.F. ~ 80% No continuum spectral variation

# **Ubiquitous Variability of N<sub>H</sub> in Seyfert Galaxies**

### Eclipses on short time scales are common!

(~10 sources with confirmed occultations in hours-days)

**Table 1.** List of sources with  $N_H$  variations on short time scales

| Name        | $ \Delta(\mathrm{N}_H)^a $ | $\Delta(\mathrm{T})^b$ | $Method^c$ | Ref. |
|-------------|----------------------------|------------------------|------------|------|
| NGC 1365    | >10 <sup>24</sup>          | $< 2 \mathrm{\ days}$  | Snapshot   |      |
| NGC 1365    | $3 \times 10^{23}$         | 10 hours               | Continuous |      |
| NGC 4388    | $2 \times 10^{23}$         | 15 hours               | Continuous |      |
| NGC 4151    | $2 \times 10^{23}$         | 20 hours               | Continuous |      |
| NGC 4151    | $10^{23}$                  | <2 days                | Snapshot   |      |
| NGC 7582    | $10^{23}$                  | 20 hours               | Snapshot   |      |
| Mrk 766     | $3 \times 10^{23}$         | 10 to 20 hours         | Continuous |      |
| MCG-6-30-15 |                            | 10 hours               | Continuous |      |
| UGC 4203    | $3 \times 10^{23}$         | < 15  days             | Snapshot   |      |
| NGC 3227    | $7 \times 10^{22}$         | 1 day                  | Continuous |      |
| NGC 4395    | $3 \times 10^{23}$         | 10 hours               | Continuous |      |

(Risaliti et al. 2010)

### Finding more sources with eclipses in ~hours-days



## Future IXO observations of AGN eclipses

- 1) Structure and properties of X-ray absorber:
  - → "Cometary" shape of clouds
  - → distribution of cloud velocities
- 2) A possible experiment of "disc tomography"
  - → probing general relativistic effects through iron line variations during an eclipse

# 1) Structure of the absorber



#### NGC 1365 Suzaku



Maiolino et al. 2010

## 1) Structure of the absorber



### Tomography of the X-ray source

#### A Relativistic Iron Line in NGC 1365





(Risaliti et al. 2009)

- 1) It is really a relativistic line
- Assumptions:
- 2) Long look (>300 ks)
- 3) Source in Compton-thin state
- 4) Complete 10-hours C-thick eclipse during obs.

## Simulation: IXO observation of the eclipsing iron line



### IXO observation of the <u>already observed</u> eclipses



### Simulation: XMM observation of the eclipsing iron line

